
LogoFAIL
Six months after disclosure

JUNE 2024

[logo]

Contents
LogoFAIL — Six months after disclosure 3

LogoFAIL and the UEFI supply chain 4—5

Patching LogoFAIL by disabling logo customization 6

Patching LogoFAIL by fixing reported vulnerabilities 7

IBVs fixes comparison 8

Current state of devices vulnerable to LogoFAIL 9

Vulnerable devices by vendor 10

A closer look at LogoFAIL patches 11

A closer look at LogoFAIL patches / Table 12—13

Conclusion 14

Patch Breakdown and Incomplete Fixes / Insyde 15—28

Patch Breakdown and Incomplete Fixes / AMI 29—41

Patch Breakdown and Incomplete Fixes / Phoenix 42—43

LogoFAIL — Six months after disclosure
LogoFAIL is a originally
disclosed in June 2023 by Binarly REsearch and
publicly reported on December 6, 2023. LogoFAIL

to display logos during boot. Device vendors
allow for customization of the boot logo, mostly
for corporate branding, widening the attack
surface of UEFI firmware. Attackers can leverage
these customization mechanisms to feed
untrusted input into image parsers, exploiting
vulnerabilities in those parsers.  

As demonstrated by Binarly in this
, LogoFAIL has significant

impact on affected systems: code execution
during the UEFI DXE phase gives full control to an
attacker, which allows subverting modern OS
defenses and to bootkit a target device.

But what makes LogoFAIL even more impactful is
that any parser used in the UEFI firmware
industry -- from common formats such as BMP to
esoteric ones such as PCX and TGA -- as per
Binarly’s testing, contained software bugs. All
Independent BIOS Vendors (IBVs) developed a
parser containing vulnerabilities. Given the
peculiar supply-chain nature of UEFI firmware,

set of vulnerabilities

affects the image parsers used by UEFI firmware

proof-of-
concept video demo

this means that any device vendor was affected
by LogoFAIL and virtually any device running UEFI
firmware contained a vulnerable image parser.

In this report, we provide a retrospective on our
LogoFAIL research six months after the public
disclosure at BlackHat EU. In the next sections, we
analyze how IBVs and vendors responded to
LogoFAIL, their updates and patches, and what
remains vulnerable. Concurrently to the release of
this analysis, we release all detailing
all the vulnerabilities discovered during this
research. And more importantly, we publicly
release our LogoFAIL detection rules on ,
our free firmware vulnerability scanner, so that
anyone can check their firmware against
LogoFAIL.

advisories

FwHunt

https://www.kb.cert.org/vuls/id/811862
https://www.binarly.io/blog/finding-logofail-the-dangers-of-image-parsing-during-system-boot
https://www.youtube.com/watch?v=EufeOPe6eqk
https://www.youtube.com/watch?v=EufeOPe6eqk
https://www.binarly.io/advisories
https://fwhunt.run/

LogoFAIL and the UEFI supply chain
In this research, we dive deeper into the shallow
waters of the firmware supply chain confusion and
the blind trust in the reference code and firmware
developers when we assume everything is fixed
several months after disclosure.

In reality, six months after disclosure, LogoFAIL
remains a very concerning issue for the entire
firmware ecosystem. The figure below shows how
the accumulation of dependencies from multiple
layers of the software supply chain
disproportionately increases complexity of this
vulnerability on the firmware side. When the
firmware code is delivered to the device, it
consumes all upper supply chain layers with all the
applied implications.

Even as we release 30+ LogoFAIL advisories to the
public, we remained worried about the number of
unfixed devices remaining in the field.
Unfortunately, IBVs like AMI and Insyde assigned
only one CVE to multiple advisories, and
vulnerabilities have been shared with them during
the disclosure process. The Binarly team raised
several concerns about this lack of transparency
and the need to assign more CVE IDs to the different
instances of LogoFAIL vulnerabilities, but our
efforts did not change the minds of AMI and Insyde,
leading to impact for downstream device vendors.

Parser vulnerabilities are among
the most common and pervasive
types of issues and are found
virtually anywhere, from personal
devices to critical infrastructure.
Under the hood, LogoFAIL is just
“another” set of parser bugs, so
what exactly makes it so difficult to
address?  

The answer to this question is
multifaceted but it’s all connected
to how LogoFAIL is deeply rooted
within the UEFI ecosystem. The first
factor is related to the
asynchronous nature of the supply
chain UEFI firmware industry,
where IBVs provide reference
implementations (based on the
silicon vendor implementation of
EDK2) to device vendors for further
customization. As shown in the
previous image, since LogoFAIL
affects the reference
implementations of IBVs, it’s
transitively present in the
codebases of every OEM and device
vendor’s firmware. This tangled

supply chain also means that

patches produced by IBVs must be
shared and merged by device
vendors in their own repositories
so that updated firmware can be
built and shipped to their
customers. Given all the parties
involved in this process, it’s not
unusual in the firmware industry to
have a 180+ days patch delivery
timeline for end users.

The second factor that makes
LogoFAIL challenging to patch is
that the affected parsers have been
spread throughout the industry for
years, making it difficult even for
the vendors themselves to know
where these parsers are embedded
and thus to identify what is
vulnerable and what is not.

The last factor is instead related to
the sheer number of vulnerabilities
that Binarly discovered during this
research project, which resulted in
30 unique security vulnerabilities
found in the tested parsers. This
left IBVs without a clear strategy to
address LogoFAIL. Some replaced

their parser with supposedly safer
third-party implementations, while
others addressed each reported
bug, occasionally releasing
incomplete fixes.

LogoFAIL and the UEFI supply chain

[logo]

IBV OEM

EFI\Lenovo\logo\mylogo

EFI\Lenovo\logo\mylogo_WxH
not removed️

Logo customization method

via iCHLogo Tool

GetVariable(“LnvOemLogoData”) + User.gif

GetVariable(“LnvOemLogoData”) + User.bmp

not removed️

not removed️

\EFI\OEM\AcerLogo.png

\EFI\OEM\AcerLogo.jpg

EFI\lenovo\logo + GetVariable(“LBLDESPFN”)

not removed️

not removed️

The most immediate and obvious
way to fix LogoFAIL is to disable
logo customization: if the image
parser used by UEFI firmware
cannot be reached with untrusted
images, then an attacker cannot
exploit the vulnerabilities in the
parser itself.

We then revisited the original
LogoFAIL advisories shared with
IBVs and device vendors,
downloading the updated firmware
for each affected device. Notably,
every firmware update specifically
mentioned in its changelog that it
had been patched against LogoFAIL.

As shown, none of the affected
vendors decided to remove the
logo customization functionality,
a decision that would effectively
mitigate LogoFAIL.

Patching LogoFAIL by disabling logo customization

Patching LogoFAIL by fixing reported vulnerabilities
Fixing these types of supply chain security issues
requires developing a certain degree of
transparency into all the layers of the software
supply chain, specifically when it comes to
protecting the foundation of platform security
tied to device and firmware security layers.

In reality, the IBVs continue to play the “security
by obscurity” game. The industry has learned
multiple times that obscurity doesn’t benefit
security. Still, in this case, the obscurity is related
to the business model of IBVs monopolizing the
market and dictating the rules of transparency,
including the vulnerability disclosure process and
details provided to NVD. That will change in the
future with more pressure from a compliance
standpoint, and Binarly is committed to
recovering firmware supply chain transparency
through our Binary Risk Intelligence technologies.

Disabling logo customization should only be
treated as a first emergency response, not as a
long term solution. Confirmed security
vulnerabilities must be properly addressed, either
by fixing the underlying software bug or by
completely removing the offending code.

To understand how the firmware industry
responded to LogoFAIL, we downloaded from the

vendors’ websites three sets of UEFI firmware
images, released just after the public disclosure
date, one month after disclosure and 6 months
after disclosure, respectively.

Referencing the chart on page 8, the first detail
that catches the eye is that only one vendor --
Phoenix Technologies -- fixed all the bugs by the
public issue disclosure date, while AMI only
patched bugs related to the BMP parser, and
Insyde patched none of the reported bugs.

To be more precise, it could be that the bugs were
patched in the IBV’s reference implementation but
given the intricate nature of the UEFI supply chain,
these patches didn’t promptly reach OEMs, device
vendors or end-users. One month after the public
disclosure date, more bugs were fixed, indicating
that public disclosure might have had a positive
effect and pushed IBVs and vendors to accelerate
their response to LogoFAIL. Finally, 6 months
later, Binarly detected that most of the bugs have
been correctly addressed by vendors, with only a
few exceptions of fixes that were attempted but
we deem incomplete. These incomplete fixes
occur either because a vendor does not attempt
to fix a reported bug at all, or because the
attempted fixes do not address all conditions that

can trigger the bug.

Our analysis revealed a second surprising and
concerning finding: none of the IBVs removed
any image parsers from their firmware. This is
particularly alarming as it goes against the
recommendations we provided during private
disclosure communications. Supporting outdated
and obscure formats, like TGA or PCX, seems
unnecessary. Similarly, complex file formats such
as JPEG, PNG and GIF should not be included in
firmware. Binarly’s recommendation remains
unchanged: graphic elements must be
converted to easier-to-parse formats (such as
BMP) before being embedded in UEFI firmware.
This approach eliminates the dependency on
complex and potentially unsafe third-party
parsing libraries.

IBVs fixes comparison

Current state of devices vulnerable to LogoFAIL

It was assumed that the fixes would be applied to
the reference code, such as EDK and IBVs, and
would then be consumed by downstream device
vendors and OEMs. However, in reality, the
situation is far more complex. After the
disclosure, we notified all the parties over CERT/
CC VINCE regarding our discoveries on assigned
CVEs confusion where the number of
vulnerabilities didn’t match the number of
assigned CVEs, and that really played a negative
role in the adoption of the security fixes.

Technically, if you fix a vulnerability, the fix
matches the CVE, but in reality, not all the security
issues related to LogoFAIL can be fixed. Binarly
Transparency Platform detects unfixed devices
daily, and almost every device still contains a few
unfixed vulnerabilities related to LogoFAIL.

LogoFAIL really puts a spotlight on the complexity
of the UEFI firmware supply chain ecosystem:
while patches were developed by IBVs, it takes
time for them to propagate in the ecosystem and
to be included in every device’s firmware. This can
be clearly seen by looking at the results of our
latest scan on our internal dataset. Even when
only looking at firmware released in 2024, we still
have hundreds of products that remain unfixed.

[logo]

Vulnerable
devices by
vendor

According to the
latest scan of our
internal dataset,
hundreds of
products with
firmware released
in 2024 remains
vulnerable.

Distribution of vulnerable devices

68
IBV

OEMs

Others

669
IBV

OEMs

Others

15
IBV

OEM

Others

A closer look at LogoFAIL patches

IBVs adopted different strategies to develop
patches against the reported bugs. The first
strategy, which was adopted by Phoenix, is to
replace existing parsing libraries with another
library called . While we fuzzed this
image library and didn’t find any crashes—a
somewhat expected outcome since this library
has been already extensively tested by the
community—this library still contains parser for
complex format and is written in C.

A similar approach has been adopted by AMI, but
limited to their existing BMP parser that was
swapped with the BMP parser included in EDK2.

On the other hand, the rest of AMI parsers and
Insyde’s parsers have been patched for each of
the reported bugs. Both vendors enhanced
security by adding more checks on untrusted
inputs and the values derived from them. For
example, BRLY-LOGOFAIL-2023-017 originated
from the lack of checks on the index used to
access a statically allocated buffer, leading to H�

stb_image

IBVs adopted different strategies to develop
patches against the reported bugs. The first
strategy, which was adopted by Phoenix, is to
replace existing parsing libraries with another
library called stb_image. While we fuzzed this
image library and didn’t find any crashes—a
somewhat expected outcome since this library
has been already extensively tested by the
community—this library still contains parser for
complex format and is written in C.

A similar approach has been adopted by AMI, but
limited to their existing BMP parser that was
swapped with the BMP parser included in EDK2.

On the other hand, the rest of AMI parsers and
Insyde’s parsers have been patched for each of
the reported bugs. Both vendors enhanced
security by adding more checks on untrusted
inputs and the values derived from them. For
example, BRLY-LOGOFAIL-2023-017 originated
from the lack of checks on the index used to
access a statically allocated buffer, leading to an
OOB memory write.

The patch implemented by AMI is straightforward, as it simply
checks that the index does not exceed the length of hLengthBuf
(322):

The patching efforts from AMI and Insyde were mostly successful,
except for one incomplete fix in Insyde’s JPEG parsers and two
unpatched bugs in Insyde’s GIF parser.

https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/nothings/stb/blob/master/stb_image.h
https://www.binarly.io/advisories/brly-logofail-2023-017

BRLY-LOGOFAIL-2023-015

BRLY-LOGOFAIL-2023-014

BRLY-LOGOFAIL-2023-013

BRLY-LOGOFAIL-2023-012

BRLY-LOGOFAIL-2023-011

BRLY-LOGOFAIL-2023-010

BRLY-LOGOFAIL-2023-009

BRLY-LOGOFAIL-2023-008

BRLY-LOGOFAIL-2023-007

BRLY-LOGOFAIL-2023-006

BRLY-LOGOFAIL-2023-005

BRLY-LOGOFAIL-2023-004

BRLY-LOGOFAIL-2023-003

BRLY-LOGOFAIL-2023-002

BRLY-LOGOFAIL-2023-001

BRLY-LOGOFAIL-2023-ID IBV

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

Insyde

AMI

AMI

AMI Added check on PNG chunk length

Added validation on ImageSize variable

Fixed by switching to BMP parser from EDK2

Added checks on TGA height and width

Added check on index variable

Check on the BlockQtBuffPtr pointer before dereference

Introduced new variable to check that enough data is still present

Added check for SosPtr, but it’s incomplete as the check is not performed before each return

Added checks so that GIF width and height are not zero

Not patched

Not patched

Added check for InitCodeSize before calling LZWDecoder

Added checks on BMP height and width

Added checks on BMP height and width

Added checks on ImageOffset

Patch Description Patched

triangle-exclamation 3.2 | Low

triangle-exclamation 3.2 | Low

hexagon-exclamation 6.0 | Medium

circle-exclamation 8.2 | High

hexagon-exclamation 6.0 | Medium

hexagon-exclamation 6.0 | Medium

triangle-exclamation 3.2 | Low

hexagon-exclamation 6.0 | Medium

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

triangle-exclamation 3.2 | Low

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

hexagon-exclamation 6.0 | Medium

CVSS Score

CWE-125

CWE-125

CWE-200

CWE-122, CWE-125

CWE-200

CWE-476

CWE-125

CWE-476

CWE-122

CWE-122, CWE-125

CWE-125

CWE-122, CWE-125

CWE-122

CWE-122

CWE-200

CWE

X86

X86

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86

X86

X86

X86

X86/ARM

X86/ARM

X86/ARM

Affected Platforms

A closer look at LogoFAIL patches

http://www.binarly.io/advisories/brly-logofail-2023-001
http://www.binarly.io/advisories/brly-logofail-2023-002
http://www.binarly.io/advisories/brly-logofail-2023-003
http://www.binarly.io/advisories/brly-logofail-2023-004
http://www.binarly.io/advisories/brly-logofail-2023-005
http://www.binarly.io/advisories/brly-logofail-2023-006
http://www.binarly.io/advisories/brly-logofail-2023-007
http://www.binarly.io/advisories/brly-logofail-2023-008
http://www.binarly.io/advisories/brly-logofail-2023-009
http://www.binarly.io/advisories/brly-logofail-2023-010
http://www.binarly.io/advisories/brly-logofail-2023-011
http://www.binarly.io/advisories/brly-logofail-2023-012
http://www.binarly.io/advisories/brly-logofail-2023-013
http://www.binarly.io/advisories/brly-logofail-2023-014
http://www.binarly.io/advisories/brly-logofail-2023-015
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html

BRLY-LOGOFAIL-2023-030

BRLY-LOGOFAIL-2023-029

BRLY-LOGOFAIL-2023-028

BRLY-LOGOFAIL-2023-027

BRLY-LOGOFAIL-2023-026

BRLY-LOGOFAIL-2023-025

BRLY-LOGOFAIL-2023-024

BRLY-LOGOFAIL-2023-023

BRLY-LOGOFAIL-2023-022

BRLY-LOGOFAIL-2023-021

BRLY-LOGOFAIL-2023-020

BRLY-LOGOFAIL-2023-019

BRLY-LOGOFAIL-2023-018

BRLY-LOGOFAIL-2023-017

BRLY-LOGOFAIL-2023-016

BRLY-LOGOFAIL-2023-ID IBV

AMI

AMI

AMI

AMI

AMI

AMI

AMI

AMI

AMI

Phoenix

Phoenix

Phoenix

Phoenix

Phoenix

Phoenix Swapped to a new image parsing library

Swapped to a new image parsing library

Swapped to a new image parsing library

Swapped to a new image parsing library

Swapped to a new image parsing library

Swapped to a new image parsing library

Added check on array index

Added check enforcing fp pointer to be inside the gBltBuf buffer

Added check on the number of Huffman Table detected

Added check on JPEG marker length

Added check that prevents index growing more than buffer size

Added check on allocation size is not 0

Added check on the multiplication between PNG width and height

Added check for array index

Indirectly patched by the fix for BRLY-LOGOFAIL-2023-018

Patch Description Patched

circle-exclamation 8.2 | High

triangle-exclamation 3.2 | Low

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

triangle-exclamation 3.2 | Low

triangle-exclamation 3.2 | Low

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

triangle-exclamation 3.2 | Low

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

circle-exclamation 8.2 | High

CVSS Score

CWE-787

CWE-125

CWE-787

CWE-122, CWE-190

CWE-200

CWE-200

CWE-787

CWE-122

CWE-787

CWE-125

CWE-787

CWE-122, CWE-190

CWE-122, CWE-190

CWE-122

CWE-122, CWE-190

CWE

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86/ARM

X86

X86

X86

X86

X86

X86

X86

Affected Platforms

A closer look at LogoFAIL patches

http://www.binarly.io/advisories/brly-logofail-2023-016
http://www.binarly.io/advisories/brly-logofail-2023-017
http://www.binarly.io/advisories/brly-logofail-2023-018
http://www.binarly.io/advisories/brly-logofail-2023-019
http://www.binarly.io/advisories/brly-logofail-2023-020
http://www.binarly.io/advisories/brly-logofail-2023-021
http://www.binarly.io/advisories/brly-logofail-2023-022
http://www.binarly.io/advisories/brly-logofail-2023-023
http://www.binarly.io/advisories/brly-logofail-2023-024
http://www.binarly.io/advisories/brly-logofail-2023-025
http://www.binarly.io/advisories/brly-logofail-2023-026
http://www.binarly.io/advisories/brly-logofail-2023-027
http://www.binarly.io/advisories/brly-logofail-2023-028
http://www.binarly.io/advisories/brly-logofail-2023-029
http://www.binarly.io/advisories/brly-logofail-2023-030
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/787.html

Conclusion

The discovery and attempts to mitigate the
LogoFAIL set of vulnerabilities are perfect
examples of complexities haunting the firmware
supply chain ecosystem and how different layers
could fail independently.

The industry needs a new approach to post-build
validation that is guided by code inspection. Any
detection logic solely based on vendor-provided
information results in incomplete or inaccurate
detection logic, as proven by LogoFAIL.

At Binarly, we are investing heavily in our Binary
Intelligence Technology to provide post-patch
validation based on semantic code properties to
provide a deeper understanding of the nature of
the code changes. Solving the software supply
chain puzzle requires gaining more data insights
from every layer of the software supply chain to
get more transparency on the nature of the code
changes and how vendors keep their promises on
addressing high-impact vulnerabilities.

References

The Far-Reaching Consequences of LogoFAIL

Finding LogoFAIL: The Dangers of Image Parsing
During System Boot

Inside the LogoFAIL PoC: From Integer Overflow to
Arbitrary Code Execution

LogoFAIL: Security Implications of Image Parsing
During System Boot

https://www.binarly.io/blog/the-far-reaching-consequences-of-logofail
https://www.binarly.io/blog/finding-logofail-the-dangers-of-image-parsing-during-system-boot
https://www.binarly.io/blog/finding-logofail-the-dangers-of-image-parsing-during-system-boot
https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution
https://www.binarly.io/blog/inside-the-logofail-poc-from-integer-overflow-to-arbitrary-code-execution
https://www.youtube.com/watch?v=ch0t2_yjQJQ
https://www.youtube.com/watch?v=ch0t2_yjQJQ

Patch Breakdown and Incomplete Fixes

Insyde

Summary of the fixes

: We detected for GIF
and JPEG parsers

incomplete fixes

] BRLY-LOGOFAIL-2023-005 (GIF)

] BRLY-LOGOFAIL-2023-006 (GIF)

] BRLY-LOGOFAIL-2023-008 (JPEG)

: All other parsers (BMP, PCX, TGA)
were correctly fixed

BmpDecoderDxe

BRLY-LOGOFAIL-2023-001 - fixed Fix: ImageOffset checks added

https://www.binarly.io/advisories/brly-logofail-2023-001

BRLY-LOGOFAIL-2023-002 - fixed Fix: changed function prototype to take into account BltBufferSize and add
checks for BmpHeader->PixelHeight, BmpHeader->PixelWidth

https://www.binarly.io/advisories/brly-logofail-2023-002

BRLY-LOGOFAIL-2023-003 - fixed Fix: changed function prototype to take into account BltBufferSize and add
checks for BmpHeader->PixelHeight, BmpHeader->PixelWidth

https://www.binarly.io/advisories/brly-logofail-2023-003

GifDecoderDxe

BRLY-LOGOFAIL-2023-004 – fixed Fix: added check for InitCodeSize before LZWDecoder function call

https://www.binarly.io/advisories/brly-logofail-2023-004

BRLY-LOGOFAIL-2023-005 – not fixed ️ BRLY-LOGOFAIL-2023-006 – not fixed ️

https://www.binarly.io/advisories/brly-logofail-2023-005
https://www.binarly.io/advisories/brly-logofail-2023-006

BRLY-LOGOFAIL-2023-007 – fixed

https://www.binarly.io/advisories/brly-logofail-2023-007

BRLY-LOGOFAIL-2023-007 – fixed

Fix: added check that ImageDesc.ImageWidth
and ImageDesc.ImageHeight are not equal
to zero, so allocation size cannot take zero
value

https://www.binarly.io/advisories/brly-logofail-2023-007

JpegDecoderDxe

BRLY-LOGOFAIL-2023-008: incomplete fix ️

Fix: there is a check in InitJfifData() function for SosPtr, however,
it’s as this check is not performed before each successful return.incomplete

Added check:

https://www.binarly.io/advisories/brly-logofail-2023-008

JpegDecoderDxe

BRLY-LOGOFAIL-2023-008: incomplete fix ️
Locations of missing checks (if any of returns below will be triggered, null
pointer dereference in InitDecoderData function will occur):

https://www.binarly.io/advisories/brly-logofail-2023-008

BRLY-LOGOFAIL-2023-009 – fixed Fix: fixed by introducing the Remainder variable that will be checked before
read operations

https://www.binarly.io/advisories/brly-logofail-2023-009

BRLY-LOGOFAIL-2023-010 – fixed

Fix: check the BlockQtBuffPtr pointer in the
McuDecode function before dereferencing

https://www.binarly.io/advisories/brly-logofail-2023-010

PcxDecoderDxe 
BRLY-LOGOFAIL-2023-011 – fixed Fix: added check for index to avoid OOB Read

https://www.binarly.io/advisories/brly-logofail-2023-011

TgaDecoderDxe

BRLY-LOGOFAIL-2023-012 – fixed Fix: added check for TgaHeader->Width and TgaHeader->Height

https://www.binarly.io/advisories/brly-logofail-2023-012

Patch Breakdown and Incomplete Fixes

AMI

Summary of the fixes

D BMP parser is fixed by switching to
BMP parser from EDK/

D All other parsers (GIF, JPEG, PNG)
were correctly fixed

BMP decoder 
BRLY-LOGOFAIL-2023-013 – fixed
BMP parser is fixed by switching to BMP parser from EDK2

https://www.binarly.io/advisories/brly-logofail-2023-013

PNG Decoder 
BRLY-LOGOFAIL-2023-014 – fixed Fix: add validation for ImageSize

https://www.binarly.io/advisories/brly-logofail-2023-014

BRLY-LOGOFAIL-2023-015 – fixed
In ReadChunk() function: Fix: add check for Length

https://www.binarly.io/advisories/brly-logofail-2023-015

BRLY-LOGOFAIL-2023-016 – fixed
In the PrepareOutput() function:

Fix: Indirectly patched by the fix for BRLY-LOGOFAIL-2023-018, since
maximum value for PngWidth will be 8 * gGlobalInfo.hdr.width and
gGlobalInfo.hdr.width is checked

https://www.binarly.io/advisories/brly-logofail-2023-016

BRLY-LOGOFAIL-2023-017 – fixed Fix: add check for array index

BRLY-LOGOFAIL-2023-018 – fixed
In the PrepareOutput() function: Fix: add check for width * height

https://www.binarly.io/advisories/brly-logofail-2023-018

BRLY-LOGOFAIL-2023-019 – fixed
In the decoder entry point: Fix: check allocation size

https://www.binarly.io/advisories/brly-logofail-2023-019

JPEG Decoder

BRLY-LOGOFAIL-2023-020 – fixed Fix: added a check to prevent writing outside the table

https://www.binarly.io/advisories/brly-logofail-2023-020

BRLY-LOGOFAIL-2023-021 – fixed Fix: added check for wLen

https://www.binarly.io/advisories/brly-logofail-2023-021

BRLY-LOGOFAIL-2023-022 – fixed

In GetJpegDimensions() function the index used to access the
HuffamTables array is not checked. Fix: add check for HT index

https://www.binarly.io/advisories/brly-logofail-2023-022

GIF Decoder

BRLY-LOGOFAIL-2023-023 – fixed
In WritePixel() function Fix: add check for fp buffer

https://www.binarly.io/advisories/brly-logofail-2023-023

BRLY-LOGOFAIL-2023-024 – fixed
In ExpandData() function: Fix: added check for array index

https://www.binarly.io/advisories/brly-logofail-2023-024

Patch Breakdown and Incomplete Fixes

Phoenix

Summary of the fixes:

Phoenix moved to another parsing
library: We did not identify
any problems during the fuzzing of the
new version. This library introduced an
additional PNG parser besides the listed
above.

stb_image.h.

https://www.google.com/url?q=https://github.com/nothings/stb/blob/master/stb_image.h&sa=D&source=editors&ust=1718793656629023&usg=AOvVaw2REXBEmKsxh3V6TmXnZdJG

Phoenix

